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We arrange quantum mechanical operators (a†a)m in their normally ordered product forms by using Touchard polyno-
mials. Moreover, we derive the anti-normally ordered forms of (a†a)±m by using special functions as well as Stirling-like
numbers together with the general mutual transformation rule between normal and anti-normal orderings of operators.
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1. Introduction

Operators, in quantum mechanics and quantum optics,
have been considered as an important characteristic by endow-
ing Bose annihilation and creation operators with the basic
commutative relation, such as

[
a,a†

]
= 1. In order to deal

with a lot of problems involved in quantum optics, say, calcu-
lating some expectation values of physical quality or various
matrix elements, the operator ordering is often fallen back on
due to its convenience. It is the main reason that the matrix
elements of the normally ordered operator function : f (a,a†) :
in coherent states |z〉= exp

(
− 1

2 zz∗+ za†
)
|0〉 yield[1,2]

〈z| : f (a,a†) : |z′〉= f (z′,z∗)exp
(
−1

2
zz∗− 1

2
z′z′∗+ z∗z′

)
, (1)

while the P-representation of density operator can be obtained
directly by the anti-normal ordering operators[3,4]

ρ̂ =
∫ d2z

π
P(z,z∗)|z〉〈z|= ··· P(a,a

†)
··· , (2)

where the symbol : : denotes the normal ordering (all creation
operators stand on the left of all annihilation operators), and

the symbol ···
··· refers to the anti-normal ordering (all annihila-

tion operators stand on the left of all creation operators). Apart
from these operator ordering forms, some others are proposed,
such as the Q-ordering and P-ordering of operators.[5–10] The
matrix elements of Q-ordered or P-ordered operator in phase
space directly yield

〈q|Qg(Q,P)Q|p〉= g(q, p)〈q|p〉 ,

〈p|Ph(Q,P)P|q〉= h(q, p)〈p|q〉 , (3)

where the symbol Q· · ·Q represents the Q-ordering (all coor-
dinate operators stand on the left of all momentum operators),
and the symbol P· · ·P denote the P-ordering (all momentum
operators stand on the left of all coordinate operators). There-
fore, it is an important task to obtain the various ordered forms
of operators as directly as possible.

In quantum optics, these operators such as (QP)m and
(QP)−m keep coming up and It is troublesome in handling
these operators due to a lack of proper mathematical tools.
To our knowledge, there has been no report on a good solu-
tion to this problem. In this paper, we shall recast the quantum
mechanical operators (a†a)m, with m being an arbitrary posi-
tive integer, into their normally ordered expressions by using
Touchard polynomials. Also, we shall derive the anti-normally
ordered expressions of (a†a)±m by using special functions as
well as Stirling-like numbers together with the general mu-
tual transformation rule between normal and anti-normal or-
derings of operators.[4–11] Moreover, we shall obtain the Q-
and P-ordered forms of (QP)±m by using an analogy method.
Finally, some applications in the deduced operator ordering
identities are discussed.

2. Normally and anti-normally ordered expan-
sion of (a†a)m and (aa†)

m

In this section, we deduce the normally and anti-normally
ordered expansions of operators (a†a)m and (aa†)

m, with m
being an arbitrary positive integer. In this work we will make
full use of a parameter differential method, special functions,
and general mutual transformation rule between normal and
anti-normal orderings of operators.[4,11]
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2.1. Normally and anti-normally ordered expansion of
(a†a)m

By using the completeness relation of Fock space
∞

∑
n=0
|n 〉〈n| = 1 and a†a |n 〉 = n |n 〉 and IWOP technique, we

obtain

(a†a)
m
= (a†a)

m ∞

∑
n=0
|n 〉〈n| =

∞

∑
n=0

nm |n 〉〈n|

= : e−a†a
∞

∑
n=0

nm

n!
(a†a)

n
: , (4)

which is the basic normally ordered form of (a†a)m. In the
above calculations, the normally ordered vacuum projection
operator |0 〉〈0| = : e−a†a : has been used. In fact, by the pa-
rameter differential method

nm =
∂ m

∂ tm etn
∣∣∣∣
t=0

we may rewrite Eq. (4) as

(a†a)
m
=

∂ m

∂ tm : e−a†a
∞

∑
n=0

(a†a)n etn

n!
:
∣∣∣∣
t=0

=
∂ m

∂ tm : e−a†a
∞

∑
n=0

(a†aet)
n

n!
:
∣∣∣∣
t=0

=
∂ m

∂ tm : ea†a(et−1) :
∣∣∣∣
t=0

. (5)

where t is a real parameter. Equation (5) is just the Touchard
polynomials defined by

Tm (ξ ) =
∂ m

∂ tm eξ (et−1)
∣∣∣∣
t=0

. (6)

That is to say, Tm (ξ ) is generated from the mother function
exp[ξ (et −1)], with

eξ (et−1) =
∞

∑
m=0

Tm (ξ )

m!
tm, (7)

which is a particular case of the (complete) Bell
polynomials.[12–14] Further, the differential form of Tm (ξ )

can also be obtained as follows (see Appendix A):

Tm (ξ ) = e−ξ

(
ξ

∂

∂ξ

)m

eξ . (8)

The more properties of Tm (ξ ) may be seen in Appendix A.
Hence we have

(a†a)
m
= :Tm

(
a†a
)

: , (9)

which is just the normally ordered expansion of (a†a)m. As
examples, the first several cases are listed below:

(a†a)
1
= : T1(a†a) : = : a†a : = a†a,

(a†a)
2
= : T2(a†a) : = : (a†a)

2
+(a†a) :

= a†2a2 +a†a,

(a†a)
3
= : T3(a†a) : = : (a†a)

3
+3(a†a)

2
+(a†a) :

= a†3a3 +3a†2a2 +a†a,

(a†a)
4
= : T4(a†a) : = : (a†a)

4
+6(a†a)

3
+7(a†a)

2
+(a†a) :

= a†4a4 +6a†3a3 +7a†2a2 +a†a.

To derive the anti-normally ordered form of (a†a)m, re-
call the general mutual transformation rules between normal
and anti-normal orderings[4,11]

: F(a,a†) := ··· exp
(
− ∂ 2

∂a∂a†

)
F(a,a†)

··· ,

··· F
(
a,a†) ··· = : exp

(
∂ 2

∂a∂a†

)
F
(
a,a†) :, (10)

then by using Eqs. (5) and (10) we will be able to obtain

(a†a)
m
=
··· exp

(
− ∂ 2

∂a∂a†

)
∂ m

∂ tm eaa†(et−1) ···

∣∣∣∣
t=0

=
∂ m

∂ tm
··· exp

(
− ∂ 2

∂a∂a†

)
eaa†(et−1) ···

∣∣∣∣
t=0

=
∂ m

∂ tm
··· exp

(
− ∂ 2

∂a∂a†

)
×
∫ d2z

π
e−zz∗+za+z∗a†(et−1) ···

∣∣∣∣
t=0

=
∂ m

∂ tm
···

∫ d2z
π

e−et zz∗+za+z∗a†(et−1) ···

∣∣∣∣
t=0

=
∂ m

∂ tm
··· e−t+aa†(1−e−t ) ···

∣∣∣∣
t=0

, (11)

which is the basic anti-normally ordered form of (a†a)m. In
the above calculations the integral formula∫ d2z

π
e−ζ zz∗+ηz+z∗ξ =

1
ζ

eηξ/ζ

with Re(ζ )> 0 being used. In order to simplify formula (11),
one can write

Xm (ξ ) =
∂ m

∂ tm e−t+ξ (1−e−t )

∣∣∣∣
t=0

. (12)

That is to say, Xm (ξ ) is generated from the mother function
exp[−t+ξ (1− e−t)], with

e−t+ξ (1−e−t ) =
∞

∑
m=0

Xm (ξ )

m!
tm. (13)

The more properties of Xm (ξ ) may be seen in Appendix B.
Thus we have

(a†a)
m
=
··· Xm(a†a) ··· , (14)

which is just the anti-normally ordered expansion of (a†a)m,
whose first several cases are listed as follows:

(a†a)
1
=
··· X1(a†a) ···=

··· a
†a−1 ··· =aa†−1,

(a†a)
2
=
··· X3(a†a) ··· =

··· (a
†a)

2−3(a†a)+1 ···
= â2â†2−3aa† +1,

(a†a)
3
=
··· X3(a†a) ··· =

··· (a
†a)

3−6(a†a)
2
+7(a†a)−1 ···

= a3a†3−6a2a†2 +7aa†−1,

(a†a)
4
=
··· X4(a†a) ···
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=
··· (a

†a)
4−10(a†a)

3
+25(a†a)

2−15(a†a)+1 ···
= a4a†4−10a3a†3 +25a2a†2−15aa† +1.

Although Xm (ξ ) may be related to Bell polynomials in some
way, it is still a good polynomial due to its brevity and physical
use, just as Hermite polynomials and Laguerre polynomials.

2.2. Normally and anti-normally ordered expansions of
(aa†)

m

In this subsection we deduce the normally and anti-
normally ordered expansions of operators (aa†)

m, with m be-
ing an arbitrary positive integer. Considering

[
a†,a

]
= −1 =[

−a,a†
]

and comparing formula (9), we can deduce that

(aa†)
m
= (−)m[(−a)a†]

m
= (−)m ··· Tm(−aa†)

··· . (15)

This is just the anti-normally ordered expansion of operator
(aa†)

m.
Moreover, by analogy with formula (14), we can obtain

(aa†)
m
= (−)m[(−a)a†]

m
= (−)m : Xm(−aa†) : , (16)

which is just the normally ordered expansion of operators
(aa†)

m.

2.3. Normally and antinormally ordered expansions of
eλa†a and eλaa†

Now we deduce the normally and anti-normally ordered
expansions of operators eλa†a and eλaa†

. By using the power
series expansion of eλa†a and Eqs. (9) and (7) we have

eλa†a =
∞

∑
n=0

λ n

n!
(a†a)

n

=
∞

∑
n=0

λ n

n!
: Tm(a†a) : = : ea†a(eλ−1) : . (17)

This is just the normally ordered expansion of exponential op-
erator eλa†a. Let eλ − 1 = µ then the following equation is
directly obtained:

: eµa†a : = ea†aln(1+µ), (18)

which is the formula where the normal ordering symbol : :
from : ea†a(eλ−1) :has been taken off.

On the other hand, using the power series expansion of
eλa†a and Eqs. (14) and (13) turn into

eλa†a =
∞

∑
n=0

λ n

n!
··· Xm(a†a) ··· =

··· e−λ+a†a(1−e−λ ) ··· . (19)

This is just the anti-normally ordered expansion of exponential
operator eλa†a. Letting 1−e−λ = µ the following is directly
obtained:

··· eµa†a ··· =
1

1−µ
e−a†aln(1−µ), (20)

which is the formula where the anti-normal ordering symbol
···
··· has been removed from ··· ea†a(eλ−1) ··· .

Similarly , by using Eqs. (15), (7), (16), and (13) we can
obtain

eλaa†
=
··· ea†a(1−e−λ ) ··· , eλaa†

= eλ : ea†a(eλ−1) : , (21)

which are the anti-normal and normal orderings of eλaa†
, re-

spectively.

3. Q- and P-ordered expansions of (QP)m and
(PQ)m

In the following section, we deduce the Q- and P-ordered
expansions of operators (QP)m and (PQ)m, with m being an
arbitrary positive integer.

In view of [Q, i
h̄ P] = −1 = [a†,a], by analogy with for-

mula (9) we can deduce that

(QP)m = (−ih̄)m
[

Q
(

i
h̄

P
)]m

= (−ih̄)mQTm

(
i
h̄

QP
)
Q, (22)

which is just the Q-ordered expansion of (QP)m. The cor-
rectness of Eq. (22) can be proved by mathematical induction
method. Further, by analogy with formula (14) we can also
derive

(QP)m = (−ih̄)m
[

Q
(

i
h̄

P
)]m

= (−ih̄)mPXm

(
i
h̄

QP
)
P, (23)

which is just the P-ordered expansion of (QP)m. Similarly, by
analogy we can also derive

(PQ)m = (ih̄)m
[(

1
ih̄

P
)

Q
]m

= (ih̄)mPTm

(
1
ih̄

QP
)
P, (24)

(PQ)m = (ih̄)m
[(

1
ih̄

P
)

Q
]m

= (ih̄)mQXm

(
1
ih̄

QP
)
Q, (25)

which are just the P- and Q-ordered expansions of (PQ)m, re-
spectively.

By using Eqs. (22)–(25), (7) and (13) or by analogy with
formulas (17), (19), and (21), we can derive

eλQP = Qexp
[

i
h̄

QP(e−i h̄λ −1)
]
Q

= Pexp
[

ih̄λ +
i
h̄

QP(1− e i h̄λ )

]
P, (26)

eλPQ = Pexp
[
− i

h̄
QP(e i h̄λ −1)

]
P

= Qexp
[
−ih̄λ +

i
h̄

QP(e−i h̄λ −1)
]
Q. (27)

These are the Q- and P-ordered expansions of eλQP and eλPQ,
respectively.
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4. Ordered expansions of operators (AB)−m

Now we deduce the ordered expansions of operators such
as (AB)−m, with m being an arbitrary positive integer. We
know that (a†a) |n 〉 = n |n 〉, n = 0,1,2,3, . . .. To be precise,
the eigenvalue of the number operator (a†a) is discrete and
contains zero. So the operator (a†a) has no inverse, that is to
say, (a†a)−1 does not exist.

4.1. Normally and antinormally ordered expansions of
(aa†)

−m

From
(
a†a
)
|n 〉 = n |n 〉 we obtain (aa†)

m |n 〉 =

(a†a+1)m |n 〉= (n+1)m |n 〉, n= 0, 1, 2, 3, . . . . Thus we see
that the operator (aa†)

m has inverse, denoted by (aa†)
−m ≡

1/(aa†)
m. By using the completeness relation of the Fock

space, we can obtain

1
(aa†)

m =
∞

∑
n=0

1
(aa†)

m |n 〉〈n| =
∞

∑
n=0

1
(n+1)m |n 〉〈n|

= : e−aa†
∞

∑
n=0

(aa†)
n

n!(n+1)m : ,

which is a basic normally ordered form of (aa†)
−m. In order

to simplify this formula, by using the power series expansion
e−x = ∑

∞
l=0 (−)

lxl/l!, we can obtain

1
(aa†)

m = :
∞

∑
l=0

(−)l

l!
(aa†)

l ∞

∑
n=0

(aa†)
n

n!(n+1)m :

= :
∞

∑
n=0

∞

∑
l=0

(−)l(aa†)
n+l

l!n!(n+1)m :

= :
∞

∑
k=0

(aa†)
k k

∑
l=0

(−)l

l!(k− l)!(k− l +1)m : . (28)

In the last step of the above calculations, we have used the
rearranging double summation formula

∞

∑
m=0

∞

∑
l=0

AmBl =
∞

∑
k=0

k

∑
l=0

Ak−lBl . (29)

Now we introduce a kind of special numbers here, defined by

Sk (m) =
k

∑
l=0

(−)l

l!(k− l)!(k− l +1)m , (30)

then equation (28) can be rewritten as

1
(aa†)

m =
∞

∑
k=0

Sk(m)a†kak, (31)

which is just the compact normally ordered form of (aa†)
−m.

From the definition of Sk (m) we can easily derive that Sk (0) =
δk,0, S0 (m) = 1 and

Sk (1) =
k

∑
l=0

(−)l

l!(k+1− l)!
=

1
(k+1)!

k

∑
l=0

(k+1)!(−)l

l!(k+1− l)!

=
1

(k+1)!

[
−(−)k+1 +

k+1

∑
l=0

(k+1)!(−)l

l!(k+1− l)!

]
=

(−)k

(k+1)!
.

Then we have

1
aa† =

∞

∑
k=0

(−)k

(k+1)!
a†kak, (32)

which is just the normally ordered expansion of (aa†)
−1. We

can prove that

(aa†)
∞

∑
k=0

(−)k

(k+1)!
a†kak =

∞

∑
k=0

(−)k

(k+1)!
a†kak(aa†) = 1.

That is to say, equation (32) is indeed the inverse operator
of (aa†). The more properties of the defined special number
Sk (m) may be seen in Appendix C.

Moreover, by using Eq. (31) and the general mutual trans-
formation rule between normal and anti-normal orderings of
operators Eq.(10), we can obtain

1
(aa†)

m =
··· exp

(
− ∂ 2

∂a∂a†

)
∞

∑
k=0

Sk (m)a†kak ···

=
···

∞

∑
k=0

Sk (m)exp
(
− ∂ 2

∂a∂a†

)
a†kak ···

=
···

∞

∑
k=0

Sk (m)Hk,k(a,a†)
···

=
···

∞

∑
k=0

(−)kSk (m)Lk(aa†)
··· , (33)

which is just the anti-normally ordered form of (aa†)
−m.

Here, Hm,n (x,y) is a two-variable Hermite polynomial
function,[4,15,16] defined as

Hm,n (x,y) = exy
(
− ∂

∂y

)m(
− ∂

∂x

)n

e−xy

= exp
(
− ∂ 2

∂x∂y

)
xmyn.

Lm (ξ ) in Eq. (33) is the Laguerre polynomial, defined by

Lm (ξ ) = eξ ∂ m

∂ξ m

(
ξ

m e−ξ

)
=

m

∑
l=0

(m!)2

(l!)2 (m− l)!
(−ξ )l ,

and the Hm,m (x,y) and Lm(ξ ) are related by

Hm,m (x,y) = exy
(
− ∂

∂y

)m(
− ∂

∂x

)m

e−xy

= (−)m exy ∂ m

∂ym ym e−xy = (−)mLm(ξ )|ξ=xy .

In particular, according to Eq. (32) we have

1
ââ†=

···
∞

∑
k=0

1
(k+1)!

Lk(aa†)
··· . (34)

4.2. Q- and P-ordered expansions of (QP)−m and (PQ)−m

Due to QP = (QP+PQ)/2+ ih̄/2 and (QP+PQ) being
a Hermitian operator, which implies the eigenvalue of (QP)
does not contain zero, we know that the operator (QP) has its
inverse operator. To be precise, (QP)−1 ≡ 1/(QP) does exit.

In view of [Q, 1
i h̄ P] = 1 = [a,a†], by analogy with the for-
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mula (28) we can deduce that
1

(QP)m =
1

(ih̄)m
1[

Q
(

1
i h̄ P
)]m

=
1

(ih̄)mP
∞

∑
k=0

(ih̄)−kSk(m)QkPkP

=
1

(ih̄)m

∞

∑
k=0

(ih̄)−kSk(m)PkQk, (35)

which is just the P-ordered expansion of (QP)−m, expressed
by the special number Sk(m).

Similarly, by analogy with formula (33) we obtain
1

(QP)m =
1

(ih̄)m
1[

Q
(

1
i h̄ P
)]m

=
1

(ih̄)mQ
∞

∑
k=0

(−)kSk (m)Lk

(
1
ih̄

QP
)
Q, (36)

which is just the Q-ordered expansion of (QP)−m, expressed
by the special number Sk(m) and Laguerre polynomial.

In a manner completely similar to the way of deriving
Eqs. (35) and (36), we may derive that

1
(PQ)m =

(
i
h̄

)m 1[(
i
h̄ P
)

Q
]m

=

(
i
h̄

)m

Q
∞

∑
k=0

Sk(m)

(
i
h̄

)k

QkPkQ,

1
(PQ)m =

(
i
h̄

)m 1[(
i
h̄ P
)

Q
]m

=

(
i
h̄

)m

P
∞

∑
k=0

(−)kSk (m)Lk

(
i
h̄

QP
)
P.

These are the Q- and P-ordered product expressions of the op-
erator (PQ)−m.

5. Applications of some identities above
In the present section we discuss some applications of the

above new identities. Since the operator (QP)m is a complex
one, with m being a big positive integer, it is tricky to calculate
its matrix elements in phase space without Eqs. (22) and (23).
Here we can see that it is easy to derive the matrix elements
by using the new identity (22). According to Eq. (22) we can
immediately obtain

〈q| (QP)m |p 〉 = (−ih̄)m

√
2π h̄

Xm

(
i
h̄

qp
)

exp
(

i
h̄

qp
)

=
(−ih̄)m

√
2π h̄

exp
(

i
h̄

qp
)

×
m

∑
n=0

(
i
h̄

qp
)n n

∑
l=0

(−)l (n− l)m

l!(n− l)!
, (37)

which is just the matrix elements of (QP)m in q−p phase
space. In the last step of the above calculations the equa-
tion (A4) in Appendix A has been used.

As another example, by using Eq. (34) we easily obtain
the P-representations of (aa†)

−1 as follows:

P(z,z∗) =
∞

∑
k=0

1
(k+1)!

Lk(zz∗)

=
∞

∑
k=0

1
(k+1)!

k

∑
l=0

k!
(k− l)!

(
k
l

)
(−zz∗)k−l .

As the last example, we discuss the application of the gen-
eral mutual transformation rules of normal and antinormal or-
derings Eq. (10). Using [an,a†] = nan−1 and [a,a†n] = na†n−1,
we have

a†n+1am = a†nama†−ma†nam−1,

a†nam+1 = aa†nam−na†n−1am. (38)

On the other hand, by using Eq. (10) we can obtain

a†n+1am =
··· exp

(
− ∂ 2

∂a∂a†

)
a†n+1am ··· =

···Hn+1,m(a†a) ··· ,

a†nam =
··· exp

(
− ∂ 2

∂a∂a†

)
a†nam ··· =

···Hn,m(a†a) ··· ,

a†nam−1 =
··· e−

∂2

∂a∂a† a†nam−1 ··· =
···Hn,m−1(a†a) ··· . (39)

a†nam+1 =
··· exp

(
− ∂ 2

∂a∂a†

)
a†nam+1 ··· =

···Hn,m+1(a†a) ··· ,

a†nam =
··· exp

(
− ∂ 2

∂a∂a†

)
a†nam ··· =

···Hn,m(a†a) ··· ,

a†n−1am =
··· e−

∂2

∂a∂a† a†n−1am ··· =
···Hn−1,m(a†a) ··· . (40)

Substituting Eqs. (39) and (40) into Eq. (38) leads to that

···Hn+1,m(a†,a) ··· =
···Hn,m(a†,a) ··· a

†−m ···Hn,m−1(a†,a) ··· ,

···Hn,m+1(a†,a) ··· = a ···Hn,m(a†,a) ··· −n ···Hn−1,m(a†,a) ··· . (41)

which indicate the recurrence relations of Hn,m(ηξ ),

Hn+1,m(η ,ξ ) = Hn,m(η ,ξ )η−m ···Hn,m−1(η ,ξ ),

Hn,m+1(η ,ξ ) = ξ Hn,m(η ,ξ )−nHn−1,m(η ,ξ ). (42)

So, it is seen that the general mutual transformation rules of
normal and antinormal orderings Eq. (10) also provide an ap-
proach to deriving the well-known recurrence relations of two-
variable Hermite polynomial.

6. Conclusions

In this work, we recast the quantum mechanical operators
(a†a)±m and (aa†)

±m, with m being an arbitrary positive inte-
ger, into their normally ordered expansions by using Touchard
polynomials and using special functions as well as a kind of
special numbers (called Stirling-like numbers). Also, we de-
rive their antinormally ordered expressions via the general mu-
tual transformation rules between normal and antinomal or-
derings of operators. Moreover, the Q- and P-ordered forms

100301-5



Chin. Phys. B Vol. 29, No. 10 (2020) 100301

of (QP)±m are also obtained by using an analogy method. Fi-
nally, some applications of these new identities are discussed.

Appendix A
The differential form and recursion relation of Touchard

polynomials Tm (ξ ).
From the definition of Touchard polynomials Tm (ξ ) we

have

Tm (ξ ) =
∂ m

∂ tm eξ (et−1)
∣∣∣∣
t=0

= e−ξ ∂ m

∂ tm eξ et
∣∣∣∣
t=0

. (A1)

Making transformation et = τ leads directly to that

Tm (ξ ) = e−ξ

(
∂τ

∂ t
∂

∂τ

)m

eξ τ

∣∣∣∣
τ=1

= e−ξ

(
τ

∂

∂τ

)m

eξ τ

∣∣∣∣
τ=1

= e−ξ

(
ξ

∂

∂ξ

)m

eξ τ

∣∣∣∣
τ=1

= e−ξ

(
ξ

∂

∂ξ

)m

eξ ,

(A2)

which is just the differential form of Touchard polynomial
Tm (ξ ). From Eq. (A2) we can easily derive

m= 0, T0 (ξ ) = 1,

m= 1, T1 (ξ ) = ξ ,

m= 2, T2 (ξ ) = ξ
2 +ξ ,

m= 3, T3 (ξ ) = ξ
3 +3ξ

2 +ξ ,

m= 4, T4 (ξ ) = ξ
4 +6ξ

3 +7ξ
2 +ξ ,

m= 5, T5 (ξ ) = ξ
5 +10ξ

4 +25ξ
3 +15ξ

2 +ξ , · · ·

From Eq. (A2) we can obtain

Tm+1 (ξ ) = e−ξ

(
ξ

∂

∂ξ

)m+1

eξ

= e−ξ

(
ξ

∂

∂ξ

)
eξ e−ξ

(
ξ

∂

∂ξ

)m

eξ

= e−ξ

(
ξ

∂

∂ξ

)
eξ Tm (ξ )

= e−ξ
ξ

(
eξ Tm (ξ )+ eξ ∂Tm (ξ )

∂ξ

)
= ξ Tm (ξ )+ξ

∂Tm (ξ )

∂ξ
. (A3)

This is just the recursion relation of Touchard polynomials. In
addition, we can deduce the power series expansion of Tn (ξ )

as follows:

Tm (ξ ) =
m

∑
n=0

ξ
n

n

∑
l=0

(−)l (n− l)m

l!(n− l)!
=

m

∑
n=0

S(m,n)ξ n, (A4)

where S(mn) is the Stirling numbers of the second kind.[12]

The complete Bell polynomial Bn(ξ ) is defined as[12]

exp

(
∑

m≥1
ym

tm

m!

)
= ∑

n≥0
Bn(y1,y2, · · · ,yn)

tn

n!
, (A5)

where for convenience, B0 is set to be 1, i.e., B0 = 1. When
ym = ξ for m = 1,2,3, . . ., equation (A5) reduces to

eξ (et−1) = ∑
n≥0

Bn(ξ ,ξ , . . . ,ξ )
tn

n!
. (A6)

By comparing Eq. (A6) with Eq. (7) one can know that
Touchard polynomial is a particular case of the (complete) Bell
polynomial, i.e., Tn (ξ ) = Bn(ξ ,ξ , . . . ,ξ ).

Appendix B
The differential form and recursion relation of new poly-

nomial Xm (ξ ).
From the definition of the new polynomial Xm (ξ ) we can

derive

Xm (ξ ) =
∂ m

∂ tm e−t+ξ (1−e−t )

∣∣∣∣
t=0

= eξ ∂ m

∂ tm e−t e−ξ e−t
∣∣∣∣
t=0

. (B1)

Let e−t = τ , then we will have

Xm (ξ ) = eξ

(
−τ

∂

∂τ

)m

τ e−ξ τ

∣∣∣∣
τ=1

= eξ

(
−τ

∂

∂τ

)(
−τ

∂

∂ t

)
· · ·
(
−τ

∂

∂τ

)(
−τ

∂

∂τ

)
︸ ︷︷ ︸

m times

τ e−ξ τ

∣∣∣∣∣
τ=1

= eξ
τ

(
− ∂

∂τ
τ

)(
− ∂

∂ t
τ

)
· · ·
(
− ∂

∂τ
τ

)(
− ∂

∂τ
τ

)
︸ ︷︷ ︸

m times

e−ξ τ

∣∣∣∣∣
τ=1

= eξ
τ

(
− ∂

∂τ
ξ

)(
− ∂

∂ t
ξ

)
· · ·
(
− ∂

∂τ
ξ

)(
− ∂

∂τ
ξ

)
︸ ︷︷ ︸

m times

e−ξ τ

∣∣∣∣∣
τ=1

= eξ

(
− ∂

∂ξ
ξ

)m

e−ξ . (B2)

This is just the differential form of new polynomial Xm (ξ ).
From Eq. (B2) we can easily derive

m= 0, X0 (ξ ) = 1,

m= 1, X1 (ξ ) = ξ −1,

m= 2, X2 (ξ ) = ξ
2−3ξ +1,

m= 3, X3 (ξ ) = ξ
3−6ξ

2 +7ξ −1,

m= 4, X4 (ξ ) = ξ
4−10ξ

3 +25ξ
2−15ξ +1,

m= 5, X5 (ξ ) = ξ
5−15ξ

4 +65ξ
3−90ξ

2 +31ξ −1,

· · ·

Further, we can also obtain the recursion relation of
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Xm (ξ ), say,

Xm+1 (ξ ) = (ξ −1)Xm (ξ )−ξ
∂Xm (ξ )

∂ξ
. (B3)

The power series expansion of Xm (ξ ) reads

Xm (ξ ) =
m

∑
n=0

ξ
n

n

∑
l=0

(−)m+l (l +1)m

l!(n− l)!
. (B4)

Appendix C

The special number is defines as

Sk (m) =
k

∑
l=0

(−)l

l!(k− l)!(k+1− l)m .

This new defined special number Sk (m) is a little like the
Stirling number of the second kind

S (m,n) =
1
n! ∑

n
j=0 (−)

j n!
j!(n− j)!

(n− j)m ≡
{

m
n

}
,

but extremely different from it. The purpose for defining the
new special number Sk (m) here is to express the expansion
of the operator such as (aa†)

−m and (QP)−m. We may call
Sk (m) the Stirling-like number. The first part of the numbers
of Sk (m) are listed in Table C1 below.

Table C1. The first part of the numbers for Sk(m).

Sk(m)
k

0 1 2 3 4 5 6 7

m

0 1 0 0 0 0 0 0 0
1 1 −1

2!
1
3!

−1
4!

1
5!

−1
6!

1
7!

−1
8!

2 1 −3
4

11
36

−25
288

137
7200

−49
14400

121
235200

−761
11289600

3 1 −7
8

85
216

−415
3456

12019
432000

−13489
2592000 · · · · · ·

4 1 −15
16

575
1296

−5845
41472

874853
25920000

−336581
51840000 · · · · · ·

5 1 −31
32

3661
7776

−76111
497664

58067611
1555200000

−68165041
9331200000 · · · · · ·

6 1 −63
64

22631
46656

−952525
5971968 · · · · · · · · · · · ·

7 1 −127
128

137845
279936

−11679655
71663616 · · · · · · · · · · · ·

8 1 −255
256

833375
1679616

−141710965
859963392 · · · · · · · · · · · ·
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